JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Strong and weak conditions of regularity and optimality

Tom 49 / 2022

V. Vivanco-Orellana, R. Osuna-Gómez, L. B. dos Santos, M. A. Rojas-Medar Applicationes Mathematicae 49 (2022), 1-20 MSC: 90C26, 90C29, 90C46. DOI: 10.4064/am2431-10-2021 Opublikowany online: 3 January 2022

Streszczenie

Nondegenerate optimality conditions for Pareto and weak Pareto optimal solutions to multiobjective optimization problems with inequality and multi-equality constraints determined by Fréchet differentiable functions are established. First, weak and strong regularity conditions are derived, in order to determine weak Karush–Kuhn–Tucker (positivity of at least one Lagrange multiplier associated with objective functions) and strong Karush–Kuhn–Tucker (positivity of all the Lagrange multipliers associated with objective functions) conditions. Subsequently, the class of problems for which every weak (resp. strong) Karush–Kuhn–Tucker point is weak (resp. strong) Pareto solution is characterized. In addition examples that illustrate our results are presented.

Autorzy

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek