JEDNOSTKA NAUKOWA KATEGORII A+

An elliptic problem involving a potential with exponential growth

Tom 51 / 2024

Oussama Dammak, Brahim Dridi, Rached Jaidane Applicationes Mathematicae 51 (2024), 47-73 MSC: Primary 35J20; Secondary 35J30, 35K57, 35J60 DOI: 10.4064/am2501-5-2024 Opublikowany online: 10 July 2024

Streszczenie

We study the nonlinear weighted elliptic problem $$-\nabla . (w_{\beta }(x)|\nabla u|^{N-2} \nabla u)+V(x)|u|^{N-2}u = f(x,u), \quad u\in W_{0}^{1,N}(B,w_{\beta }) , $$ where $B$ is the unit ball of $\mathbb R^{N}$, $N \gt 2$, $w_{\beta }(x)=(1-\log |x|)^{\beta (N-1)}$, $\beta \in [0,1)$, is the singular logarithmic weight with the limiting exponent $N-1$ in the Trudinger–Moser embedding, and $V$ is a continuous positive potential. The nonlinearities critical or subcritical growth in view of Trudinger–Moser inequalities. We prove the existence of nontrivial solutions via critical point theory. In the critical case, the associated energy functional does not satisfy the compactness condition. We give a new growth condition and we point out its importance for checking the Palais–Smale compactness condition.

Autorzy

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek