JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Causal graphs, composable stochastic processes and conditional independence

Tom 51 / 2024

Wojciech Niemiro Applicationes Mathematicae 51 (2024), 109-130 MSC: Primary 62H22; Secondary 60J27, 62A01, 62D20 DOI: 10.4064/am2511-10-2024 Opublikowany online: 7 November 2024

Streszczenie

We consider multivariate stochastic processes with causal relations between their components modelled by directed graphs with possible cycles. Our aim is to express conditional independence relations for such processes in terms of separability properties of the underlying graphs. This line of study is quite classical and was initiated in the seminal paper of Pearl (1985), then extended to point processes by Didelez (2007, 2008) and to time series by Eichler (2007) and Eichler and Didelez (2007). In our paper we provide a unifying view and fill in certain gaps. We define a class of models called composable random elements (CRE) which encompasses usual Bayesian networks (BN), dynamic BNs (DBN), continuous time BNs (CTBN) and marked point processes. We show that key results known in the classical setup of directed acyclic graphs (DAG) can be generalised to CREs and remain valid also for graphs containing cycles. For CTBNs, we prove a new theorem that characterises independence between the future of one subprocess and the past of another given the past of a third subprocess. Our paper also tackles causal (interventional) conditional independence relations, strengthening and generalising results of Ay and Polani (2008).

Autorzy

  • Wojciech NiemiroInstitute of Applied Mathematics and Mechanics
    University of Warsaw
    Warszawa, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek