Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

A Characterization of Uniform Distribution

Tom 53 / 2005

Joanna Chachulska Bulletin Polish Acad. Sci. Math. 53 (2005), 207-220 MSC: 60E05, 62E10, 28A12. DOI: 10.4064/ba53-2-9

Streszczenie

Is the Lebesgue measure on a unique product measure on [0,1]^2 which is transformed again into a product measure on [0,1]^2 by the mapping \psi(x,y)=(x,(x+y)\bmod 1))? Here a somewhat stronger version of this problem in a probabilistic framework is answered. It is shown that for independent and identically distributed random variables X and Y constancy of the conditional expectations of X+Y-I(X+Y>1) and its square given X identifies uniform distribution either absolutely continuous or discrete. No assumptions are imposed on the supports of the distributions of X and Y.

Autorzy

  • Joanna ChachulskaFaculty of Mathematics and Information Science
    Warsaw University of Technology
    Pl. Politechniki 1
    00-661 Warszawa, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek