JEDNOSTKA NAUKOWA KATEGORII A+

A Characterization of One-Element $p$-Bases of Rings of Constants

Tom 59 / 2011

Piotr Jędrzejewicz Bulletin Polish Acad. Sci. Math. 59 (2011), 19-26 MSC: Primary 13N15; Secondary 12E05. DOI: 10.4064/ba59-1-3

Streszczenie

Let $K$ be a unique factorization domain of characteristic $p>0$, and let $f\in K[x_1,\dots,x_n]$ be a polynomial not lying in $K[x_1^p,\dots,x_n^p]$. We prove that $K[x_1^p,\dots,x_n^p, f]$ is the ring of constants of a $K$-derivation of $K[x_1,\dots,x_n]$ if and only if all the partial derivatives of $f$ are relatively prime. The proof is based on a generalization of Freudenburg's lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.

Autorzy

  • Piotr JędrzejewiczFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    87-100 Toruń, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek