Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Some Notions of Separability of Metric Spaces in and Their Relation to Compactness

Tom 64 / 2016

Kyriakos Keremedis Bulletin Polish Acad. Sci. Math. 64 (2016), 109-136 MSC: 03E25, 54D65, 54D30. DOI: 10.4064/ba8087-12-2016 Opublikowany online: 20 December 2016

Streszczenie

In the realm of metric spaces we show in \mathbf {ZF} that:

(1) Quasi separability (a metric space \mathbf {X}=(X,d) is quasi separable iff \mathbf {X} has a dense subset which is expressible as a countable union of finite sets) is the weakest property under which a limit point compact metric space is compact.

(2) \omega -quasi separability (a metric space \mathbf {X}=(X,d) is \omega -quasi separable iff \mathbf {X} has a dense subset which is expressible as a countable union of countable sets) is a property under which a countably compact metric space is compact.

(3) The statement “Every totally bounded metric space is separable” does not imply the countable choice axiom \mathbf {CAC}.

Autorzy

  • Kyriakos KeremedisDepartment of Mathematics
    University of the Aegean
    Karlovassi, Samos 83200, Greece
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek