Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

On some geometric properties of Banach spaces of continuous functions on separable compact lines

Tom 65 / 2017

Artur Michalak Bulletin Polish Acad. Sci. Math. 65 (2017), 57-68 MSC: Primary 46B20; Secondary 46E15, 54F05. DOI: 10.4064/ba8086-4-2017 Opublikowany online: 5 June 2017

Streszczenie

We study properties of Banach spaces of all continuous scalar (real or complex) functions on compact lines L. First we show that if L is a separable compact line, then for every closed linear subspace X of C(L) with separable dual the quotient space C(L)/X possesses a sequence of continuous linear functionals separating its points. Next we show that for any compact line L the space C(L) contains no subspace isomorphic to a C(K) space where K is a separable nonmetrizable scattered compact Hausdorff space with countable height.

Autorzy

  • Artur MichalakFaculty of Mathematics and Computer Science
    A. Mickiewicz University in Poznań
    Umultowska 87
    61-614 Poznań, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek