JEDNOSTKA NAUKOWA KATEGORII A+

Characterization of local dimension functions of subsets of ${\Bbb R}^{d}$

Tom 103 / 2005

L. Olsen Colloquium Mathematicum 103 (2005), 231-239 MSC: Primary 28A80. DOI: 10.4064/cm103-2-8

Streszczenie

For a subset $E\subseteq {\mathbb R}^{d}$ and $x\in {\mathbb R}^{d}$, the local Hausdorff dimension function of $E$ at $x$ is defined by $$ \mathop {\rm dim} \nolimits _{{\mathsf H}, {\mathsf loc}}(x,E) = \mathop {\rm lim}_{r\searrow 0}\mathop {\rm dim}\nolimits _{ {\sf H}}(E\cap B(x,r)) $$ where $\mathop {\rm dim}\nolimits _{{\sf H}}$ denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.

Autorzy

  • L. OlsenDepartment of Mathematics
    University of St. Andrews
    St. Andrews, Fife KY16 9SS, Scotland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek