Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

The Hochschild cohomology ring modulo nilpotence of a stacked monomial algebra

Tom 105 / 2006

Edward L. Green, Nicole Snashall Colloquium Mathematicum 105 (2006), 233-258 MSC: Primary 16E40, 16G20, 16S15. DOI: 10.4064/cm105-2-6

Streszczenie

This paper studies the Hochschild cohomology of finite-dimensional monomial algebras. If with I an admissible monomial ideal, then we give sufficient conditions for the existence of an embedding of K[x_1, \ldots , x_r]/\langle x_ax_b \hbox{ for } a \neq b\rangle into the Hochschild cohomology ring \mathop{\rm HH}^*({\mit\Lambda}). We also introduce stacked algebras, a new class of monomial algebras which includes Koszul and D-Koszul monomial algebras. If {\mit\Lambda} is a stacked algebra, we prove that \mathop{\rm HH}^*({\mit\Lambda})/{\cal N} \cong K[x_1, \ldots , x_r]/\langle x_ax_b \hbox{ for } a \neq b\rangle, where {\cal N} is the ideal in \mathop{\rm HH}^*({\mit\Lambda}) generated by the homogeneous nilpotent elements. In particular, this shows that the Hochschild cohomology ring of {\mit\Lambda} modulo nilpotence is finitely generated as an algebra.

Autorzy

  • Edward L. GreenDepartment of Mathematics
    Virginia Tech
    Blacksburg, VA 24061-0123, U.S.A.
    e-mail
  • Nicole SnashallDepartment of Mathematics
    University of Leicester
    University Road
    Leicester, LE1 7RH, England
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek