JEDNOSTKA NAUKOWA KATEGORII A+

Pseudoprime Cullen and Woodall numbers

Tom 107 / 2007

Florian Luca, Igor E. Shparlinski Colloquium Mathematicum 107 (2007), 35-43 MSC: 11A07, 11B83, 11N25. DOI: 10.4064/cm107-1-5

Streszczenie

We show that if $a>1$ is any fixed integer, then for a sufficiently large $x>1$, the $n$th Cullen number $C_n = n2^n +1$ is a base $a$ pseudoprime only for at most $O(x\log \log x/\! \log x)$ positive integers $n\le x$. This complements a result of E. Heppner which asserts that $C_n$ is prime for at most $O(x/\! \log x)$ of positive integers $n\le x$. We also prove a similar result concerning the pseudoprimality to base $a$ of the Woodall numbers given by $W_n=n2^n-1$ for all $n\ge 1$.

Autorzy

  • Florian LucaInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    C.P. 58089, Morelia, Michoacán, México
    e-mail
  • Igor E. ShparlinskiDepartment of Computing
    Macquarie University
    Sydney, NSW 2109, Australia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek