JEDNOSTKA NAUKOWA KATEGORII A+

Trisections of module categories

Tom 107 / 2007

José A. de la Peña, Idun Reiten Colloquium Mathematicum 107 (2007), 191-219 MSC: 16G60, 16G20, 16G70, 18G20. DOI: 10.4064/cm107-2-3

Streszczenie

Let $A$ be a finite-dimensional algebra over a field $k$. We discuss the existence of trisections $(\mathop{\rm mod}\nolimits_+A,\mathop{\rm mod}\nolimits_0A,\mathop{\rm mod}\nolimits_-A)$ of the category of finitely generated modules $\mod A$ satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander–Reiten quiver lying in $\mathop{\rm mod}\nolimits_0A$.

Autorzy

  • José A. de la PeñaInstituto de Matemáticas
    UNAM
    Circuito Exterior
    Ciudad Universitaria
    México 04510, D.F., México
    e-mail
  • Idun ReitenInstitutt for Matematikk og Statistikk
    Universitetet i Trondheim, AVH
    N-7055 Dragvoll, Norway
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek