Loading [MathJax]/config/TeX-AMS_HTML.js

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Chen's inequality in the Lagrangian case

Tom 108 / 2007

Teodor Oprea Colloquium Mathematicum 108 (2007), 163-169 MSC: 53C21, 53C24, 53C25, 49K35. DOI: 10.4064/cm108-1-15

Streszczenie

In the theory of submanifolds, the following problem is fundamental: establish simple relationships between the main intrinsic invariants and the main extrinsic invariants of submanifolds. The basic relationships discovered until now are inequalities. To analyze such problems, we follow the idea of C. Udrişte that the method of constrained extremum is a natural way to prove geometric inequalities. We improve Chen's inequality which characterizes a totally real submanifold of a complex space form. For that we suppose that the submanifold is Lagrangian and we formulate and analyze a suitable constrained extremum problem.

Autorzy

  • Teodor OpreaFaculty of Mathematics and Informatics
    University of Bucharest
    Str. Academiei 14
    010014 Bucureşti, Romania
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek