JEDNOSTKA NAUKOWA KATEGORII A+

The $M/M/1$ queue is Bernoulli

Tom 110 / 2008

Michael Keane, Neil O'Connell Colloquium Mathematicum 110 (2008), 205-210 MSC: Primary 60K25, 37A50; Secondary 60J25, 60J65, 37H99. DOI: 10.4064/cm110-1-9

Streszczenie

The classical output theorem for the $M/M/1$ queue, due to Burke (1956), states that the departure process from a stationary $M/M/1$ queue, in equilibrium, has the same law as the arrivals process, that is, it is a Poisson process. We show that the associated measure-preserving transformation is metrically isomorphic to a two-sided Bernoulli shift. We also discuss some extensions of Burke's theorem where it remains an open problem to determine if, or under what conditions, the analogue of this result holds.

Autorzy

  • Michael KeaneDepartment of Mathematics
    and Computer Science
    Wesleyan University
    Middletown, CT 06459, U.S.A.
    e-mail
  • Neil O'ConnellDepartment of Mathematics and BCRI
    University College Cork
    Cork, Ireland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek