JEDNOSTKA NAUKOWA KATEGORII A+

Which Bernoulli measures are good measures?

Tom 110 / 2008

Ethan Akin, Randall Dougherty, R. Daniel Mauldin, Andrew Yingst Colloquium Mathematicum 110 (2008), 243-291 MSC: Primary 37B05; Secondary 28D05, 28C10. DOI: 10.4064/cm110-2-2

Streszczenie

For measures on a Cantor space, the demand that the measure be “good” is a useful homogeneity condition. We examine the question of when a Bernoulli measure on the sequence space for an alphabet of size $n$ is good. Complete answers are given for the $n = 2$ cases and the rational cases. Partial results are obtained for the general cases.

Autorzy

  • Ethan AkinMathematics Department
    The City College
    137 Street and Convent Avenue
    New York City, NY 10031, U.S.A.
    e-mail
  • Randall DoughertyIDA Center for Communications Research
    4320 Westerra Ct.
    San Diego, CA 92121, U.S.A.
    e-mail
  • R. Daniel MauldinDepartment of Mathematics
    University of North Texas
    P.O. Box 311430
    Denton, TX 76203, U.S.A.
    e-mail
  • Andrew YingstDepartment of Mathematics
    University of South Carolina
    Columbia, SC 29208, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek