JEDNOSTKA NAUKOWA KATEGORII A+

On faithful projective representations of finite abelian $p$-groups over a field of characteristic $p$

Tom 111 / 2008

Leonid F. Barannyk Colloquium Mathematicum 111 (2008), 135-147 MSC: 16S35, 20C20, 20C25. DOI: 10.4064/cm111-1-12

Streszczenie

Let $G$ be a noncyclic abelian $p$-group and $K$ be an infinite field of finite characteristic $p$. For every $2$-cocycle $\lambda \in Z^2(G,K^*)$ such that the twisted group algebra $K^\lambda G$ is of infinite representation type, we find natural numbers $d$ for which $G$ has infinitely many faithful absolutely indecomposable $\lambda $-representations over $K$ of dimension $d$.

Autorzy

  • Leonid F. BarannykInstitute of Mathematics
    Pomeranian University of S/lupsk
    Arciszewskiego 22b
    76-200 S/lupsk, Poland
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek