JEDNOSTKA NAUKOWA KATEGORII A+

$C(X)$ vs. $C(X)$ modulo its socle

Tom 111 / 2008

F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati Colloquium Mathematicum 111 (2008), 315-336 MSC: Primary 54C40; Secondary 13A30, 16P20. DOI: 10.4064/cm111-2-9

Streszczenie

Let $C_F(X)$ be the socle of $C(X)$. It is shown that each prime ideal in ${C(X)}/{C_F(X)}$ is essential. For each $h\in C(X)$, we prove that every prime ideal (resp. z-ideal) of ${C(X)}/{(h)}$ is essential if and only if the set $Z(h)$ of zeros of $h$ contains no isolated points (resp. $\mathop{\rm int}\nolimits Z(h)=\emptyset$). It is proved that $\dim ({C(X)}/{C_F(X)}) \geq \dim C(X)$, where $\dim C(X)$ denotes the Goldie dimension of $C(X)$, and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential ideal $E$ in $C(X)$, we observe that ${E}/{C_F(X)}$ is essential in ${C(X)}/{C_F(X)}$ if and only if the set of isolated points of $X$ is finite. Finally, we characterize topological spaces $X$ for which the Jacobson radical of ${C(X)}/{C_F(X)}$ is zero, and as a consequence we observe that the cardinality of a discrete space $X$ is nonmeasurable if and only if $\upsilon X$, the realcompactification of $X$, is first countable.

Autorzy

  • F. AzarpanahDepartment of Mathematics
    Chamran University
    Ahvaz, Iran
    e-mail
  • O. A. S. KaramzadehDepartment of Mathematics
    Chamran University
    Ahvaz, Iran
    e-mail
  • S. RahmatiDepartment of Mathematics
    Chamran University
    Ahvaz, Iran

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek