Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform

Tom 118 / 2010

Eugenio Hernández, Hrvoje Šikić, Guido Weiss, Edward Wilson Colloquium Mathematicum 118 (2010), 313-332 MSC: 42C40, 43A65, 43A70. DOI: 10.4064/cm118-1-17

Streszczenie

We just published a paper showing that the properties of the shift invariant spaces, , generated by the translates by \mathbb{Z}^n of an f in L^2(\mathbb{R}^n) correspond to the properties of the spaces L^2(\mathbb{T}^n,p), where the weight p equals [\hat f,\hat f]. This correspondence helps us produce many new properties of the spaces \langle f\rangle. In this paper we extend this method to the case where the role of \mathbb{Z}^n is taken over by locally compact abelian groups G, L^2(\mathbb{R}^n) is replaced by a separable Hilbert space on which a unitary representation of G acts, and the role of L^2(\mathbb{T}^n,p) is assumed by a weighted space L^2(\widehat G, w), where \widehat G is the dual group of G. This provides many different extensions of the theory of wavelets and related methods for carrying out signal analysis.

Autorzy

  • Eugenio HernándezDepartamento de Matemáticas
    Universidad Autónoma de Madrid
    28049 Madrid, Spain
    e-mail
  • Hrvoje ŠikićDepartment of Mathematics
    University of Zagreb
    Bijenička 30
    HR-10 000 Zagreb, Croatia
    e-mail
  • Guido WeissDepartment of Mathematics
    Washington University
    Box 1146
    St. Louis, MO 63130, U.S.A.
    e-mail
  • Edward WilsonDepartment of Mathematics
    Washington University
    Box 1146
    St. Louis, MO 63130, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek