JEDNOSTKA NAUKOWA KATEGORII A+

Maps with dimensionally restricted fibers

Tom 123 / 2011

Vesko Valov Colloquium Mathematicum 123 (2011), 239-248 MSC: Primary 54F45; Secondary 54E40. DOI: 10.4064/cm123-2-8

Streszczenie

We prove that if $f\colon X\to Y$ is a closed surjective map between metric spaces such that every fiber $f^{-1}(y)$ belongs to a class $\mathrm S$ of spaces, then there exists an $F_\sigma$-set $A\subset X$ such that $A\in\mathrm S$ and $\dim f^{-1}(y)\setminus A=0$ for all $y\in Y$. Here, $\mathrm S$ can be one of the following classes: (i) $\{M:\mathop{\rm e\text{-}dim}\nolimits M\leq K\}$ for some $CW$-complex $K$; (ii) $C$-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if $\mathrm S=\{M:\dim M\leq n\}$, then $\dim f\bigtriangleup g\leq 0$ for almost all $g\in C(X,\mathbb I^{n+1})$.

Autorzy

  • Vesko ValovDepartment of Computer Science and Mathematics
    Nipissing University
    100 College Drive
    P.O. Box 5002
    North Bay, ON, P1B 8L7, Canada
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek