JEDNOSTKA NAUKOWA KATEGORII A+

On the diophantine equation $x^y-y^x=c^z$

Tom 128 / 2012

Zhongfeng Zhang, Jiagui Luo, Pingzhi Yuan Colloquium Mathematicum 128 (2012), 277-285 MSC: Primary 11D61; Secondary 11D41. DOI: 10.4064/cm128-2-13

Streszczenie

Applying results on linear forms in $p$-adic logarithms, we prove that if $(x,y,z)$ is a positive integer solution to the equation $x^y-y^x=c^z$ with ${\rm gcd}(x,y)=1$ then $(x,y,z)=(2,1,k)$, $(3, 2, k)$, $k\geq 1$ if $c=1$, and either $(x,y,z)=(c^k+1,1,k)$, $k\geq 1$ or $2\leq x < y\leq\max\{1.5\times 10^{10}, c\}$ if $c\geq 2$.

Autorzy

  • Zhongfeng ZhangSchool of Mathematics and Information Science
    Zhaoqing University
    526061 Zhaoqing, P.R. China
    e-mail
  • Jiagui LuoSchool of Mathematics and Information Science
    Zhaoqing University
    526061 Zhaoqing, P.R. China
    e-mail
  • Pingzhi YuanDepartment of Mathematics
    South China Normal University
    510631 Guangzhou, P.R. China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek