JEDNOSTKA NAUKOWA KATEGORII A+

On the Cauchy problem for convolution equations

Tom 133 / 2013

Jan Kisyński Colloquium Mathematicum 133 (2013), 115-132 MSC: Primary 35E15, 47D06, 46F99, 42B99. DOI: 10.4064/cm133-1-8

Streszczenie

We consider one-parameter $(C_{0})$-semigroups of operators in the space $\mathcal S'({\mathbb R}^n;{\mathbb C}^m)$ with infinitesimal generator of the form $(G\,*)|_{\mathcal S'({\mathbb R}^n;{\mathbb C}^m)}$ where $G$ is an $M_{m\times m}$-valued rapidly decreasing distribution on ${\mathbb R}^n$. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces $\mathcal S({\mathbb R}^n;{\mathbb C}^m)$, $\mathcal D_{L^{p}}({\mathbb R}^n;{\mathbb C}^m)$, $p\in [1,\infty ]$, $(\mathcal O_{a})({\mathbb R}^n;{\mathbb C}^m)$, $a\in \mathopen ]0,\infty \mathclose [$, or the spaces $\mathcal D'_{L^{q}}({\mathbb R}^n;{\mathbb C}^m)$, $q\in \mathopen ]1,\infty ]$, of bounded distributions.

Autorzy

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek