JEDNOSTKA NAUKOWA KATEGORII A+

Cofiniteness of torsion functors of cofinite modules

Tom 136 / 2014

Reza Naghipour, Kamal Bahmanpour, Imaneh Khalili Gorji Colloquium Mathematicum 136 (2014), 221-230 MSC: 13D45, 14B15, 13E05. DOI: 10.4064/cm136-2-4

Streszczenie

Let $R$ be a Noetherian ring and $I$ an ideal of $R$. Let $M$ be an $I$-cofinite and $N$ a finitely generated $R$-module. It is shown that the $R$-modules ${\rm Tor}_i^R(N,M)$ are $I$-cofinite for all $i\geq 0$ whenever $\dim\mathop {\rm Supp}(M)\leq 1$ or $\dim\mathop {\rm Supp}(N)\leq 2$. This immediately implies that if $I$ has dimension one (i.e., $\dim R/I=1$) then the $R$-modules ${\rm Tor}_i^R(N,H^{j}_{I}(M))$ are $I$-cofinite for all $i, j\geq 0$. Also, we prove that if $R$ is local, then the $R$-modules ${\rm Tor}_i^R(N,M)$ are $I$-weakly cofinite for all $i\geq 0$ whenever $\dim\mathop {\rm Supp}(M)\leq 2$ or $\dim\mathop{\rm Supp}(N)\leq 3$. Finally, it is shown that the $R$-modules ${\rm Tor}_i^R(N,H^{j}_{I}(M))$ are $I$-weakly cofinite for all $i, j\geq 0$ whenever $\dim R/I\leq 2$.

Autorzy

  • Reza NaghipourDepartment of Mathematics
    University of Tabriz
    Tabriz, Iran
    and
    School of Mathematics
    Institute for Research
    in Fundamental Sciences (IPM)
    P.O. Box 19395-5746
    Tehran, Iran
    e-mail
    e-mail
  • Kamal BahmanpourFaculty of Science
    University of Mohaghegh Ardabili
    Ardabil, Iran
    and
    School of Mathematics
    Institute for Research
    in Fundamental Sciences (IPM)
    P.O. Box 19395-5746
    Tehran, Iran
    e-mail
  • Imaneh Khalili GorjiDepartment of Basic Sciences
    Imam Khomeini International University
    P.O. Box 34149-1-6818
    Qazvin, Iran
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek