JEDNOSTKA NAUKOWA KATEGORII A+

Reflexivity of Toeplitz operators in multiply connected regions

Tom 142 / 2016

Wojciech Młocek, Marek Ptak Colloquium Mathematicum 142 (2016), 83-97 MSC: Primary 47L80; Secondary 47L05, 47L45. DOI: 10.4064/cm142-1-4

Streszczenie

Subspaces of Toeplitz operators on the Hardy spaces over a multiply connected region in the complex plane are investigated. A universal covering map of such a region and the group of automorphisms invariant with respect to the covering map connect the Hardy space on this multiply connected region with a certain subspace of the classical Hardy space on the disc. We also present some connections of Toeplitz operators on both spaces from the reflexivity point of view.

Autorzy

  • Wojciech MłocekInstitute of Mathematics
    University of Agriculture
    Balicka 253c
    30-198 Kraków, Poland
    e-mail
  • Marek PtakInstitute of Mathematics
    University of Agriculture
    Balicka 253c
    30-198 Kraków, Poland
    and
    Institute of Mathematics
    Pedagogical University
    Podchorążych 2
    30-084 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek