Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

The structure of split regular Hom-Poisson algebras

Tom 145 / 2016

María J. Aragón Periñán, Antonio J. Calderón Martín Colloquium Mathematicum 145 (2016), 1-13 MSC: Primary 17A30, 17B63; Secondary 17A60, 17B22. DOI: 10.4064/cm6568-9-2015 Opublikowany online: 10 March 2016

Streszczenie

We introduce the class of split regular Hom-Poisson algebras formed by those Hom-Poisson algebras whose underlying Hom-Lie algebras are split and regular. This class is the natural extension of the ones of split Hom-Lie algebras and of split Poisson algebras. We show that the structure theorems for split Poisson algebras can be extended to the more general setting of split regular Hom-Poisson algebras. That is, we prove that an arbitrary split regular Hom-Poisson algebra is of the form {\mathfrak P}=U + \sum _{j}{I}_{j} with U a linear subspace of a maximal abelian subalgebra H and any {I}_{j} a well described (split) ideal of {\mathfrak P}, satisfying \{{ I}_j , { I}_k\}+{ I}_j { I}_k=0 if j\not =k. Under certain conditions, the simplicity of {\mathfrak P} is characterized, and it is shown that {\mathfrak P} is the direct sum of the family of its simple ideals.

Autorzy

  • María J. Aragón PeriñánDepartment of Mathematics
    Faculty od Sciences
    University of Cádiz
    11510 Puerto Real, Cádiz, Spain
    e-mail
  • Antonio J. Calderón MartínDepartment of Mathematics
    Faculty od Sciences
    University of Cádiz
    11510 Puerto Real, Cádiz, Spain
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek