JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Suslin's lemma for rings containing an infinite field

Tom 146 / 2017

Samiha Monceur, Ihsen Yengui Colloquium Mathematicum 146 (2017), 111-122 MSC: Primary 13Cxx, 13Pxx; Secondary 14Qxx. DOI: 10.4064/cm5969-2-2015 Opublikowany online: 9 September 2016

Streszczenie

A well-known lemma of Suslin says that for a commutative ring ${\bf A}$, if $^{\rm t}(v_1,\ldots ,v_n) \in {\bf A}[X]^{n\times 1}$ is unimodular where $v_1$ is monic of degree $d$ and $n\geq 3$, then there exist $\gamma _1,\ldots ,\gamma _{\ell } \in {\rm E}_{n-1}({\bf A}[X])$ such that, denoting by $w_i$ the first coordinate of $\gamma _i {^{\rm t}(}v_2,\ldots ,v_n)$, we have $$\langle {{\rm Res}_X(v_1, w_1), \ldots , {\rm Res}_X (v_1, w_{\ell })}\rangle = {\bf A}.$$

This lemma played a central role in Suslin’s resolution of Serre’s conjecture. In case ${\bf A}$ contains a set $E = \{y_0,\ldots ,y_{(n-2)d}\}$ such that $y_i -y_j \in {\bf A}^{\times }$ for $i \not =j$, we prove that the $\gamma _i$’s can simply correspond to the elementary operations $L_1 \rightarrow L_1 + \sum _{j=2}^{n-1} y_i^{j-2} L_j$, $0 \leq i \leq (n -2) d$. These efficient elementary operations enable us to give a new and simple algorithm (for the Quillen–Suslin theorem) for reducing unimodular rows with entries in ${\bf K}[X_1,\ldots ,X_k]$ to $^{\rm t}(1,0,\ldots ,0)$, using elementary operations in case ${\bf K}$ is an infinite field. This work generalizes a previous paper by Lombardi and the second author which corresponds to the particular case $n = 3$.

Autorzy

  • Samiha MonceurDepartment of Mathematics
    Faculty of Sciences
    University of Sfax
    3000 Sfax, Tunisia
  • Ihsen YenguiDepartment of Mathematics
    Faculty of Sciences of Sfax
    University of Sfax
    3000 Sfax, Tunisia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek