JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Two new kinds of numbers and related divisibility results

Tom 154 / 2018

Zhi-Wei Sun Colloquium Mathematicum 154 (2018), 241-273 MSC: Primary 11A07, 11B65; Secondary 05A10, 05A30, 11B75, 11E25. DOI: 10.4064/cm7405-1-2018 Opublikowany online: 14 September 2018

Streszczenie

We mainly introduce two new kinds of numbers given by \begin{alignat*}2 R_n&=\sum_{k=0}^n\left(n\atop k\right)\left({n+k}\atop k\right)\frac1{2k-1}&\ \quad&(n=0,1,2,\ldots),\\ S_n&=\sum_{k=0}^n\left(n\atop k\right)^2\left({2k}\atop k\right)(2k+1)&\quad\ &(n=0,1,2,\ldots). \end{alignat*} We find that such numbers have many interesting arithmetic properties. For example, if $p\equiv1\pmod 4$ is a prime with $p=x^2+y^2$ (where $x\equiv1\pmod 4$ and $y\equiv0\pmod 2$), then $$R_{(p-1)/2}\equiv p-(-1)^{(p-1)/4}2x\pmod{p^2}.$$ Also, $$\frac1{n^2}\sum_{k=0}^{n-1}S_k\in\mathbb Z\quad \text{and}\quad \frac1n\sum_{k=0}^{n-1}S_k(x)\in\mathbb Z[x]\ \quad\text{for all } n=1,2,\ldots,$$ where $S_k(x)=\sum_{j=0}^k\binom kj^2\binom{2j}j(2j+1)x^j$. For any positive integers $a$ and $n$, we show that, somewhat surprisingly, $$\frac1{n^2}\sum_{k=0}^{n-1}(2k+1)\left( {n-1}\atop k\right)^a\left( {-n-1}\atop k\right)^a\in\mathbb Z\quad \text{and}\quad \frac1n\sum_{k=0}^{n-1}\frac{\binom{n-1}k^a\binom{-n-1}k^a}{4k^2-1}\in\mathbb Z.$$ We also solve a conjecture of V. J. W. Guo and J. Zeng, and pose several conjectures for further research.

Autorzy

  • Zhi-Wei SunDepartment of Mathematics
    Nanjing University
    Nanjing 210093, People’s Republic of China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek