Homogeneous actions on Urysohn spaces
Pierre Fima, François Le Maître, Julien Melleray, Soyoung Moon
Colloquium Mathematicum 167 (2022), 21-61
MSC: Primary 03E15, 20E06; Secondary 20B22.
DOI: 10.4064/cm7706-1-2021
Opublikowany online: 26 March 2021
Streszczenie
We show that many countable groups acting on trees, including free products of infinitely countable groups and surface groups, are isomorphic to dense subgroups of isometry groups of bounded Urysohn spaces. This extends previous results of the first and the last authors with Y. Stalder on dense subgroups of the automorphism group of the random graph. In the unbounded case, we also show that every free product of infinitely countable groups arises as a dense subgroup of the isometry group of the rational Urysohn space.
Autorzy
- Pierre FimaUniversité de Paris, Sorbonne Université
CNRS, Institut de Mathématiques
de Jussieu – Paris Rive Gauche
75013 Paris, France
e-mail
- François Le MaîtreUniversité de Paris, Sorbonne Université
CNRS, Institut de Mathématiques
de Jussieu – Paris Rive Gauche
F-75013, Paris, France
e-mail
- Julien MellerayUniversité de Lyon
Université Claude Bernard – Lyon 1
CNRS UMR 5208, Institut Camille Jordan
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex, France
e-mail
- Soyoung MoonUniversité de Bourgogne
Institut Mathématiques de Bourgogne
CNRS UMR 5584
BP 47870
21078 Dijon Cedex, France
e-mail