JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

The Jordan algebras of Riemann, Weyl and curvature compatible tensors

Tom 167 / 2022

Carlo Alberto Mantica, Luca Guido Molinari Colloquium Mathematicum 167 (2022), 63-72 MSC: Primary 53B20; Secondary 17C90. DOI: 10.4064/cm8067-10-2020 Opublikowany online: 12 April 2021

Streszczenie

Given the Riemann, or the Weyl, or a generalized curvature tensor $K$, a symmetric tensor $b_{ij}$ is called \emph {compatible} with the curvature tensor if $b_i{}^m K_{jklm} + b_j{}^m K_{kilm} + b_k{}^m K_{ijlm}=0$. In addition to establishing some known and some new properties of such tensors, we prove that they form a special Jordan algebra, i.e. the symmetrized product of $K$-compatible tensors is $K$-compatible.

Autorzy

  • Carlo Alberto ManticaI.I.S. Lagrange
    Via L. Modignani 65
    20161 Milano, Italy
    and
    I.N.F.N. sezione di Milano
    Via Celoria 16
    20133 Milano, Italy
    e-mail
  • Luca Guido MolinariPhysics Department Aldo Pontremoli
    Università degli Studi di Milano
    Via Festa del Perdono 7
    20122 Milano, Italy
    and
    I.N.F.N. sezione di Milano
    Via Celoria 16
    20133 Milano, Italy
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek