JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Individual ergodic theorems for infinite measure

Tom 167 / 2022

Vladimir Chilin, Doğan Çömez, Semyon Litvinov Colloquium Mathematicum 167 (2022), 219-238 MSC: Primary 47A35; Secondary 37A30. DOI: 10.4064/cm8271-2-2021 Opublikowany online: 31 May 2021

Streszczenie

Given a $\sigma $-finite infinite measure space $(\Omega ,\mu )$, it is shown that any Dun\-ford–Schwartz operator $T: \mathcal {L}^1(\Omega )\to \mathcal {L}^1(\Omega )$ can be uniquely extended to the space $\mathcal {L}^1(\Omega )+\mathcal {L}^\infty (\Omega )$. This allows one to find the largest subspace $\mathcal {R}_\mu $ of $\mathcal {L}^1(\Omega )+\mathcal {L}^\infty (\Omega )$ such that the ergodic averages $n^{{-1}}\sum _{k=0}^{n-1}T^k(f)$ converge almost uniformly (in Egorov’s sense) for every $f\in \mathcal {R}_\mu $ and every Dunford–Schwartz operator $T$. Utilizing this result, almost uniform convergence of the averages $n^{-1}\sum _{k=0}^{n-1}\beta _kT^k(f)$ for every $f\in \mathcal {R}_\mu $, any Dunford–Schwartz operator $T$ and any bounded Besicovitch sequence $\{\beta _k\}$ is established. Further, given a measure preserving transformation $\tau :\Omega \to \Omega $, Assani’s extension of Bourgain’s Return Times theorem to $\sigma $-finite measures is employed to show that for each $f\in \mathcal {R}_\mu $ there exists a set $\Omega _f\subset \Omega $ such that $\mu (\Omega \setminus \Omega _f)=0$ and the averages $n^{-1}\sum _{k=0}^{n-1}\beta _kf(\tau ^k\omega )$ converge for all $\omega \in \Omega _f$ and any bounded Besicovitch sequence $\{\beta _k\}$. Applications to fully symmetric subspaces $E\subset \mathcal {R}_\mu $ are outlined.

Autorzy

  • Vladimir ChilinThe National University of Uzbekistan
    Vuzgorodok
    Tashkent, Uzbekistan
    e-mail
    e-mail
  • Doğan ÇömezNorth Dakota State University
    P.O. Box 6050
    Fargo, ND 58108, U.S.A.
    e-mail
  • Semyon LitvinovPennsylvania State University
    76 University Drive
    Hazleton, PA 18202, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek