Scattering and blowup beyond the mass-energy threshold for the cubic NLS with a potential
Tom 172 / 2023
                    
                    
                        Colloquium Mathematicum 172 (2023), 143-163                    
                                        
                        MSC: Primary 35P25; Secondary 35Q55.                    
                                        
                        DOI: 10.4064/cm8978-10-2022                    
                                            
                            Opublikowany online: 7 December 2022                        
                                    
                                                Streszczenie
We consider the focusing cubic nonlinear Schrödinger equation with a potential, $i \partial _{t}u+(\Delta -V)u+|u|^{2}u=0$, with finite energy and finite variance initial data in dimension $3$. We investigate the scattering versus blow up dichotomy above the mass-energy threshold for finite variance solutions. Key ingredients in the proof include variational analysis, a virial argument and the concentration-compactness/rigidity method.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            