JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Characterizations of generalized John domains via homological bounded turning

Tom 176 / 2024

Paweł Goldstein, Zofia Grochulska, Chang-Yu Guo, Pekka Koskela, Debanjan Nandi Colloquium Mathematicum 176 (2024), 87-105 MSC: Primary 57N65; Secondary 55M05 DOI: 10.4064/cm9084-7-2024 Opublikowany online: 3 October 2024

Streszczenie

We extend the characterization of John disks obtained by Näkki and Väisälä (1991) to generalized John domains in higher dimensions under mild assumptions. The main ingredient in this characterization is to use the higher-dimensional analogues of local linear connectivity (LLC) and homological bounded turning properties introduced by Väisälä in his 1997 study of metric duality theory.

Somewhat surprisingly, we construct a uniform domain in $\mathbb R^3$, which is topologically simple, such that the complementary domain fails to be homotopically $1$-bounded turning. In particular, this shows that a similar characterization of generalized John domains in terms of higher-dimensional homotopic bounded turning does not hold in dimension 3.

Autorzy

  • Paweł GoldsteinInstitute of Mathematics
    Faculty of Mathematics, Informatics and Mechanics
    University of Warsaw
    02-097 Warszawa, Poland
    e-mail
  • Zofia GrochulskaInstitute of Mathematics
    Faculty of Mathematics, Informatics and Mechanics
    University of Warszawa
    02-097 Warszawa, Poland
    e-mail
  • Chang-Yu GuoResearch Center for Mathematics and Interdisciplinary Sciences
    Shandong University
    266237 Qingdao, P. R. China
    and
    Department of Physics and Mathematics
    University of Eastern Finland
    80101 Joensuu, Finland
    e-mail
  • Pekka KoskelaDepartment of Mathematics and Statistics
    University of Jyväskylä
    40014 Jyväskylä, Finland
    e-mail
  • Debanjan NandiDepartment of Mathematics
    Indian Institute of Science
    Bengaluru 560012, India
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek