On positive Rockland operators
Tom 67 / 1994
Colloquium Mathematicum 67 (1994), 197-216
DOI: 10.4064/cm-67-2-197-216
Streszczenie
Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on $L_p(G;dg)$. Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on $L_2$ we prove that it is closed on each of the $L_p$-spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the $L_p$-spaces, p ∈ [1,∞]. Further extensions of these results to nonhomogeneous operators and general representations are also given.