JEDNOSTKA NAUKOWA KATEGORII A+

Infinite families of noncototients

Tom 86 / 2000

A. Flammenkamp, F. Luca Colloquium Mathematicum 86 (2000), 37-41 DOI: 10.4064/cm-86-1-37-41

Streszczenie

For any positive integer $n$ let ϕ(n) be the Euler function of n. A positive integer $n$ is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression $(2^mk)_{m ≥ 1}$ consists entirely of noncototients. We then use computations to detect seven such positive integers k.

Autorzy

  • A. Flammenkamp
  • F. Luca

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek