JEDNOSTKA NAUKOWA KATEGORII A+

Local-global principle for annihilation of general local cohomology

Tom 87 / 2001

J. Asadollahi, K. Khashyarmanesh, Sh. Salarian Colloquium Mathematicum 87 (2001), 129-136 MSC: Primary 13D45. DOI: 10.4064/cm87-1-8

Streszczenie

Let $A$ be a Noetherian ring, let $M$ be a finitely generated $A$-module and let ${\mit \Phi } $ be a system of ideals of $A$. We prove that, for any ideal ${\mathfrak a}$ in ${\mit \Phi } $, if, for every prime ideal ${\mathfrak p}$ of $A$, there exists an integer $k({\mathfrak p})$, depending on ${\mathfrak p}$, such that ${\mathfrak a}^{k({ \mathfrak p})}$ kills the general local cohomology module $H_{{\mit \Phi } _{{\mathfrak p}}}^j(M_{{ \mathfrak p}})$ for every integer $j$ less than a fixed integer $n$, where ${\mit \Phi } _{{ \mathfrak p}}:=\{ {\mathfrak a}_{{\mathfrak p}}:{\mathfrak a}\in {\mit \Phi } \} $, then there exists an integer $k$ such that ${\mathfrak a}^kH_{{\mit \Phi } }^j(M)=0$ for every $j< n$.

Autorzy

  • J. AsadollahiSchool of Science
    Tarbiat Modarres University
    P.O. Box 14155-4838
    Tehran, Iran
  • K. KhashyarmaneshInstitute for Studies in Theoretical Physics and Mathematics
    P.O. Box 19395-5746
    Tehran, Iran
    and
    Department of Mathematics
    Damghan University
    P.O. Box 36715-364
    Damghan, Iran
    e-mail
  • Sh. SalarianInstitute for Studies in Theoretical Physics and Mathematics
    P.O. Box 19395-5746
    Tehran, Iran
    and
    Department of Mathematics
    Damghan University
    P.O. Box 36715-364
    Damghan, Iran

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek