Historic forcing for Depth
Tom 89 / 2001
Colloquium Mathematicum 89 (2001), 99-115
MSC: Primary 03E35, 03G05; Secondary 03E05, 06Exx.
DOI: 10.4064/cm89-1-7
Streszczenie
We show that, consistently, for some regular cardinals $\theta <\lambda $, there exists a Boolean algebra ${\mathbb B}$ such that $|{\mathbb B}|=\lambda ^+$ and for every subalgebra ${\mathbb B}'\subseteq {\mathbb B}$ of size $\lambda ^+$ we have $\mathop {\rm Depth}\nolimits ({\mathbb B}')= \theta $.