JEDNOSTKA NAUKOWA KATEGORII A+

Koszul and quasi-Koszul algebras obtained by tilting

Tom 92 / 2002

R. M. Aquino, E. L. Green, E. N. Marcos Colloquium Mathematicum 92 (2002), 197-224 MSC: Primary 16S34; Secondary 16S50, 16W50. DOI: 10.4064/cm92-2-5

Streszczenie

Given a finite-dimensional algebra, we present sufficient conditions on the projective presentation of the algebra modulo its radical for a tilted algebra to be a Koszul algebra and for the endomorphism ring of a tilting module to be a quasi-Koszul algebra. One condition we impose is that the algebra has global dimension no greater than $2$. One of the main techniques is studying maps between the direct summands of the tilting module. Some applications are given. We also show that a Brenner–Butler tilted algebra is simply connected if and only if the original algebra is simply connected.

Autorzy

  • R. M. AquinoDepartamento de Matemática Pura
    Instituto de Matemática e Estatistica
    da Universidade de São Paulo
    rua do Matão, 1010
    05508-900 São Paulo, SP, Brazil
    e-mail
  • E. L. GreenMathematics Department
    Virginia Polytechnic Institute
    and State University
    Blacksburg, VA 24061-0123, USA
    e-mail
  • E. N. MarcosDepartamento de Matemática Pura
    Instituto de Matemática e Estatistica
    da Universidade de São Paulo
    rua do Matão, 1010
    05508-900 São Paulo, SP, Brazil
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek