JEDNOSTKA NAUKOWA KATEGORII A+

$L^{p}({\Bbb R}^{n})$ bounds for commutators of convolution operators

Tom 93 / 2002

Guoen Hu, Qiyu Sun, Xin Wang Colloquium Mathematicum 93 (2002), 11-20 MSC: Primary 42B20. DOI: 10.4064/cm93-1-2

Streszczenie

The $L^p({\mathbb R}^{n})$ boundedness is established for commutators generated by $\mathop {\rm BMO}\nolimits ({\mathbb R}^{n})$ functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the $L^p({\mathbb R}^{n})$ boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos–Stefanov condition.

Autorzy

  • Guoen HuDepartment of Applied Mathematics
    University of Information Engineering
    P.O. Box 1001-747
    Zhengzhou 450002, China
    e-mail
  • Qiyu SunDepartment of Mathematics
    The National University of Singapore
    Lower Kent Ridge Road
    119260 Singapore
    e-mail
  • Xin WangDepartment of Applied Mathematics
    University of Information Engineering
    P.O. Box 1001-747
    Zhengzhou 450002, China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek