JEDNOSTKA NAUKOWA KATEGORII A+

The natural operators lifting $1$-forms to some vector bundle functors

Tom 93 / 2002

J. Kurek, W. M. Mikulski Colloquium Mathematicum 93 (2002), 259-265 MSC: Primary 58A20. DOI: 10.4064/cm93-2-5

Streszczenie

Let $F:{\cal M} f\to {\cal V}{\cal B}$ be a vector bundle functor. First we classify all natural operators $T_{| {\cal M} f_n}\rightsquigarrow T^{(0,0)} (F_{| {\cal M} f_n})^*$ transforming vector fields to functions on the dual bundle functor $(F_{| {\cal M} f_n})^*$. Next, we study the natural operators $T^*_{| {\cal M} f_n}\rightsquigarrow T^*(F_{| {\cal M} f_n})^*$ lifting $1$-forms to $(F_{| {\cal M} f_n})^*$. As an application we classify the natural operators $T^*_{| {\cal M} f_n}\rightsquigarrow T^*(F_{| {\cal M} f_n})^*$ for some well known vector bundle functors $F$.

Autorzy

  • J. KurekInstitute of Mathematics
    Maria Curie-Skłodowska University
    Pl. Marii Curie-Skłodowskiej 1
    20-031 Lublin, Poland
    e-mail
  • W. M. MikulskiInstitute of Mathematics
    Jagiellonian University
    Reymonta 4
    50-039 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek