JEDNOSTKA NAUKOWA KATEGORII A+

Dissident maps on the seven-dimensional Euclidean space

Tom 97 / 2003

Ernst Dieterich, Lars Lindberg Colloquium Mathematicum 97 (2003), 251-276 MSC: 15A21, 15A30, 17A35, 17A45. DOI: 10.4064/cm97-2-10

Streszczenie

Our article contributes to the classification of dissident maps on ${\mathbb R}^7$, which in turn contributes to the classification of 8-dimensional real division algebras.
We study two large classes of dissident maps on ${\mathbb R}^7$. The first class is formed by all composed dissident maps, obtained from a vector product on ${\mathbb R}^7$ by composition with a definite endomorphism. The second class is formed by all doubled dissident maps, obtained as the purely imaginary parts of the structures of those 8-dimensional real quadratic division algebras which arise from a 4-dimensional real quadratic division algebra by doubling. For each of these two classes we exhibit a complete (but redundant) classification, given by a 49-parameter family of composed dissident maps and a 9-parameter family of doubled dissident maps respectively. The intersection of these two classes forms one isoclass of dissident maps only, namely the isoclass consisting of all vector products on ${\mathbb R}^7$.

Autorzy

  • Ernst DieterichMatematiska institutionen
    Uppsala universitet, Box 480
    SE-751 06 Uppsala, Sweden
    e-mail
  • Lars LindbergMatematiska institutionen
    Uppsala universitet, Box 480
    SE-751 06 Uppsala, Sweden
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek