JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Zeta functions and complex dimensions of relative fractal drums: theory, examples and applications

Tom 526 / 2017

Michel L. Lapidus, Goran Radunović, Darko Žubrinić Dissertationes Mathematicae 526 (2017), 1-105 MSC: Primary 11M41, 28A12, 28A75, 28A80, 28B15, 30D10, 42B20, 44A05; Secondary 11M06, 30D30, 37C30, 37C45, 40A10, 44A10, 45Q05. DOI: 10.4064/dm757-4-2017 Opublikowany online: 17 November 2017

Streszczenie

In 2009, the first author introduced a new class of zeta functions, called “distance zeta functions”, associated with arbitrary compact fractal subsets of Euclidean spaces of arbitrary dimension. It represents a natural, but nontrivial extension of the existing theory of “geometric zeta functions” of bounded fractal strings. In this work, we introduce the class of “relative fractal drums” (or RFDs), which contains the classes of bounded fractal strings and of compact fractal subsets of Euclidean spaces as special cases. Furthermore, the associated (relative) distance zeta functions of RFDs extend the aforementioned classes of fractal zeta functions. The abscissa of (absolute) convergence of any relative fractal drum is equal to the relative box dimension of the RFD. We pay particular attention to constructing meromorphic extensions of the distance zeta functions of RFDs, as well as to the construction of transcendentally $\infty$-quasiperiodic RFDs. We also describe a class of RFDs, called maximal hyperfractals, such that the critical line of convergence consists solely of nonremovable singularities of the associated relative distance zeta functions. Finally, we also describe a class of Minkowski measurable RFDs which possess an infinite sequence of complex dimensions of arbitrary multiplicity $m\ge1$, and even an infinite sequence of essential singularities along the critical line.

Autorzy

  • Michel L. LapidusDepartment of Mathematics
    University of California
    900 University Avenue
    231 Surge Building
    Riverside, CA 92521-0135, U.S.A.
    e-mail
  • Goran RadunovićDepartment of Applied Mathematics
    Faculty of Electrical Engineering and Computing
    University of Zagreb
    Unska 3
    10000 Zagreb, Croatia
    e-mail
  • Darko ŽubrinićDepartment of Applied Mathematics
    Faculty of Electrical Engineering and Computing
    University of Zagreb
    Unska 3
    10000 Zagreb, Croatia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek