JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Mesures d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif dans le cas rationnel

Tom 543 / 2019

François Ballaÿ Dissertationes Mathematicae 543 (2019), 1-78 MSC: Primary 11J86; Secondary 11J61, 14G40. DOI: 10.4064/dm781-5-2019 Opublikowany online: 11 September 2019

Streszczenie

We establish new measures of linear independence of logarithms on a commutative algebraic group. Let $G$ be a connected commutative algebraic group over $\overline{{\mathbb{Q}}}$ and let $t_G$ be the tangent space at the origin. We consider a vector $u \in t_G \otimes_{\overline{{\mathbb{Q}}}} {\mathbb{C}}$ such that its image by the exponential map of the Lie group $G({\mathbb{C}})$ is an algebraic point ${\mathbf{p}} \in G(\overline{{\mathbb{Q}}})$. Let $V$ be a hyperplane in $t_G$. We obtain lower bounds for the distance $d(u,V)$ between $u$ and $V \otimes_{\overline{{\mathbb{Q}}}} {\mathbb{C}}$ in the rational case, where $V=t_H$ is the tangent space at the origin of an algebraic connected subgroup of $G$. These lower bounds are the best currently known in terms of the height $h({\mathbf{p}})$ of ${\mathbf{p}}$. They generalize measures of linear forms in logarithms previously obtained by Gaudron. Our approach is based on new arguments which allow us to exclude the so-called periodic case in the demonstration, by revisiting previous work of Bertrand and Philippon. Our proofs also rely on tools from Bost’s slope theory of hermitian vector bundles. Moreover, we present ultrametric analogues of our results, and we deal with the case where $V = t_H$ is a linear subspace of any dimension.

Autorzy

  • François BallaÿBeijing International Center for Mathematical Research
    Peking University
    5 Yiheyuan Road Haidian District
    Beijing 100871, China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek