JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Evolution equations governed by quasilinear operators satisfying Carathéodory’s conditions

Tom 571 / 2022

Toshitaka Matsumoto, Hirokazu Oka, Naoki Tanaka Dissertationes Mathematicae 571 (2022), 1-70 DOI: 10.4064/dm836-10-2021 Opublikowany online: 15 December 2021

Streszczenie

The aim of this paper is to study the abstract quasilinear evolution equation $u’(t)=A(t,u(t))u(t)$ under a strong measurability condition with respect to $t$ on a family $\{A(t,w)\}$ of linear operators instead of a strong continuity condition used in previous researches. Our strategy is that we introduce several types of solutions and approximate solutions to a ‘linearized’ problem of the nonautonomous form $u’(t)=A(t,v(t))u(t)$, where $v$ is a given solution to the original problem in some sense, and establish the local well-posedness of strong solutions under a commutator condition on $A(t,w)$ by using a theorem on convergence of approximate solutions of the linearized problem. We also give a criterion for the continuation of local strong solutions and use it to obtain a global well-posedness theorem, which applies to solving the Cauchy problem for an abstract inhomogeneous Kirchhoff equation with linear dissipation. Finally, we establish an analogue of the Neveu–Trotter–Kato approximation theorem for the abstract quasilinear evolution equation.

Autorzy

  • Toshitaka MatsumotoDepartment of Mathematics
    Faculty of Sciences
    Shizuoka University
    Shizuoka 422-8529, Japan
    e-mail
  • Hirokazu OkaFaculty of Engineering
    Ibaraki University
    Hitachi 316-8511, Japan
    e-mail
  • Naoki TanakaDepartment of Mathematics
    Faculty of Sciences
    Shizuoka University
    Shizuoka 422-8529, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek