JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Harmonic analysis on graphs via Bratteli diagrams and path-space measures

Tom 574 / 2022

Sergey Bezuglyi, Palle E. T. Jorgensen Dissertationes Mathematicae 574 (2022), 1-74 MSC: 37B10, 42B37, 47L50, 60J45, 28D05, 37A20. DOI: 10.4064/dm826-12-2021 Opublikowany online: 28 February 2022

Streszczenie

The past decade has seen a flourishing of advances in harmonic analysis of graphs. They lie at the crossroads of graph theory and such analytical tools as graph Laplacians, Markov processes and associated boundaries, analysis of path-space, harmonic analysis, dynamics, and tail-invariant measures. Motivated by recent advances for the special case of Bratteli diagrams, our present focus will be on those graph systems $G$ with the property that the sets $V$ of vertices and $E$ of edges admit discrete level structures. A choice of discrete levels in turn leads to new and intriguing discrete-time random-walk models.

Our main extension (which greatly expands the earlier analysis of Bratteli diagrams) is the case when the levels in the graph system $G$ under consideration are now allowed to be standard measure spaces. Hence, in the measure framework, we must deal with systems of transition probabilities, as opposed to incidence matrices (for the traditional Bratteli diagrams).

The paper is divided into two parts, (i) the special case when the levels are countable discrete systems, and (ii) the (non-atomic) measurable category, i.e., when each level is a prescribed measure space with standard Borel structure. The study of the two cases together is motivated in part by recent new results on graph-limits. Our results depend on a new analysis of certain duality systems for operators in Hilbert space; specifically, one dual system of operators for each level. We prove new results in both cases, (i) and (ii); and we further stress both similarities, and differences, between results and techniques involved in the two cases.

Autorzy

  • Sergey BezuglyiDepartment of Mathematics
    University of Iowa
    Iowa City, IA 52246, USA
    e-mail
  • Palle E. T. JorgensenDepartment of Mathematics
    University of Iowa
    Iowa City, IA 52246, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek