Zawartość tomu 132
-
Inaccessibility, essential maps, and shape theory Fundamenta Mathematicae 132 (1989), 1-23 DOI: 10.4064/fm-132-1-1-23
-
The space $(ω*)^{n+1}$ is not always a continuous image of $(ω*)^n$ Fundamenta Mathematicae 132 (1989), 59-72 DOI: 10.4064/fm-132-1-59-72
-
Sur le nombre de côtés d'une sous-variété Fundamenta Mathematicae 132 (1989), 73-88 DOI: 10.4064/fm-132-1-73-88
-
Trivial bundles and near-homeomorphisms Fundamenta Mathematicae 132 (1989), 89-98 DOI: 10.4064/fm-132-2-89-98
-
The second Peano derivative as a composite derivative Fundamenta Mathematicae 132 (1989), 99-103 DOI: 10.4064/fm-132-2-99-103
-
Bing-Whitehead Cantor sets Fundamenta Mathematicae 132 (1989), 105-116 DOI: 10.4064/fm-132-2-105-116
-
Polynomial growth trivial extensions of simply connected algebras Fundamenta Mathematicae 132 (1989), 117-134 DOI: 10.4064/fm-132-2-117-134
-
Non-trivial homeomorphisms of βN\N without the continuum hypothesis Fundamenta Mathematicae 132 (1989), 135-141 DOI: 10.4064/fm-132-2-135-141
-
The Banach-Tarski paradox for the hyperbolic plane Fundamenta Mathematicae 132 (1989), 143-149 DOI: 10.4064/fm-132-2-143-149
-
Simplexwise linear and piecewise linear near self-homeomorphisms of surfaces Fundamenta Mathematicae 132 (1989), 151-162 DOI: 10.4064/fm-132-2-151-162
-
Subparacompactness in locally nice spaces Fundamenta Mathematicae 132 (1989), 163-169 DOI: 10.4064/fm-132-2-163-169
-
Flipping properties and huge cardinals Fundamenta Mathematicae 132 (1989), 171-188 DOI: 10.4064/fm-132-3-171-188
-
Functions provably total in $I^{-}Σ_{n}$ Fundamenta Mathematicae 132 (1989), 189-194 DOI: 10.4064/fm-132-3-189-194
-
An isomorphism theorem of Hurewicz type in the proper homotopy category Fundamenta Mathematicae 132 (1989), 195-214 DOI: 10.4064/fm-132-3-195-214
-
Jumps of entropy in one dimension Fundamenta Mathematicae 132 (1989), 215-226 DOI: 10.4064/fm-132-3-215-226
-
The Lipschitz condition for the conjugacies of Feigenbaum-like mappings Fundamenta Mathematicae 132 (1989), 227-258 DOI: 10.4064/fm-132-3-227-258