A contribution to the topological classification of the spaces Ср(X)
Tom 142 / 1993
Fundamenta Mathematicae 142 (1993), 269-301
DOI: 10.4064/fm-142-3-269-301
Streszczenie
We prove that for each countably infinite, regular space X such that $C_p(X)$ is a $Z_σ$-space, the topology of $C_p(X)$ is determined by the class $F_0(C_p(X))$ of spaces embeddable onto closed subsets of $C_p(X)$. We show that $C_p(X)$, whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set $Ω_α$ for the multiplicative Borel class $M_α$ if $F_0(C_p(X)) = M_α$. For each ordinal α ≥ 2, we provide an example $X_α$ such that $C_p(X_α)$ is homeomorphic to $Ω_α$.