JEDNOSTKA NAUKOWA KATEGORII A+

Monotone σ-complete groups with unbounded refinement

Tom 151 / 1996

Friedrich Wehrung Fundamenta Mathematicae 151 (1996), 177-187 DOI: 10.4064/fm-151-2-177-187

Streszczenie

The real line ℝ may be characterized as the unique non-atomic directed partially ordered abelian group which is monotone σ-complete (countable increasing bounded sequences have suprema), has the countable refinement property (countable sums $∑_ma_m = ∑_nb_n$ of positive (possibly infinite) elements have common refinements) and is linearly ordered. We prove here that the latter condition is not redundant, thus solving an old problem by A. Tarski, by proving that there are many spaces (in particular, of arbitrarily large cardinality) satisfying all the above listed axioms except linear ordering.

Autorzy

  • Friedrich Wehrung

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek