JEDNOSTKA NAUKOWA KATEGORII A+

Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval

Tom 160 / 1999

Sergiĭ Kolyada, Michał Misiurewicz, L’ubomír Snoha Fundamenta Mathematicae 160 (1999), 161-181 DOI: 10.4064/fm-160-2-161-181

Streszczenie

The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces $(X_i)^∞_{i = 1}$ and a sequence of continuous maps $(f_i)^∞_{i = 1}$, $f_i : X_i → X_{i+1}$, is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of $f_n ○... ○ f_2 ○ f_1$. As an application we construct a large class of smooth triangular maps of the square of type $2^∞$ and positive topological entropy.

Autorzy

  • Sergiĭ Kolyada
  • Michał Misiurewicz
  • L’ubomír Snoha

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek