JEDNOSTKA NAUKOWA KATEGORII A+

Countable partitions of the sets of points and lines

Tom 160 / 1999

James H. Schmerl Fundamenta Mathematicae 160 (1999), 183-196 DOI: 10.4064/fm-160-2-183-196

Streszczenie

The following theorem is proved, answering a question raised by Davies in 1963. If $L_0 ∪ L_1 ∪ L_2 ∪...$ is a partition of the set of lines of $ℝ^n$, then there is a partition $ℝ^n = S_0 ∪ S_1 ∪ S_2 ∪...$ such that $|ℓ ∩ S_i| ≤ 2$ whenever $ℓ ∈ L_i$. There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson & Mauldin.

Autorzy

  • James H. Schmerl

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek