Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

A method for evaluating the fractal dimension in the plane, using coverings with crosses

Tom 172 / 2002

Claude Tricot Fundamenta Mathematicae 172 (2002), 181-199 MSC: 28A75, 28A80. DOI: 10.4064/fm172-2-5

Streszczenie

Various methods may be used to define the Minkowski–Bouligand dimension of a compact subset in the plane. The best known is the box method. After introducing the notion of \varepsilon -connected set E_{\varepsilon }, we consider a new method based upon coverings of E_{\varepsilon } with crosses of diameter 2{\varepsilon }. To prove that this cross method gives the fractal dimension for all E, the main argument consists in constructing a special pavement of the complementary set with squares. This method gives rise to a dimension formula using integrals, which generalizes the well known variation method for graphs of continuous functions.

Autorzy

  • Claude TricotLaboratoire de Mathématiques Pures
    Université Blaise Pascal
    63177 Aubière Cedex, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek