Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

More on the Ehrenfeucht–Fraisse game of length

Tom 175 / 2002

Tapani Hyttinen, Saharon Shelah, Jouko Vaananen Fundamenta Mathematicae 175 (2002), 79-96 MSC: 03C55, 03C75, 03C45. DOI: 10.4064/fm175-1-5

Streszczenie

By results of [9] there are models {\frak A} and {\frak B} for which the Ehrenfeucht–Fraïssé game of length \omega _1, {\rm EFG}_{\omega _1}({\frak A},{\frak B}), is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality \le \aleph _2. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and {\rm EFG}_{\omega _1}({\frak A},{\frak B}) is determined for all models {\frak A} and {\frak B} of cardinality \aleph _2” is that of a weakly compact cardinal. On the other hand, we show that if 2^{\aleph _0}<2^{\aleph _{3}}, T is a countable complete first order theory, and one of

(i) T is unstable,

(ii) T is superstable with DOP or OTOP,

(iii) T is stable and unsuperstable and 2^{\aleph _0}\le \aleph _{3},

holds, then there are {\cal A},{\cal B}\mathrel |\mathrel {\mkern -3mu}=T of power \aleph _{3} such that {\rm EFG}_{\omega _{1}}({\cal A},{\cal B}) is non-determined.

Autorzy

  • Tapani HyttinenDepartment of Mathematics
    P.O. Box 4 (Yliopistonkatu 5)
    00014 University of Helsinki, Finland
    e-mail
  • Saharon ShelahEinstein Institute of Mathematics
    The Hebrew University of Jerusalem
    Jerusalem 91904, Israel
    and
    Deparment of Mathematics
    Rutgers University
    New Brunswick, NJ 08903, U.S.A.
    e-mail
  • Jouko VaananenDepartment of Mathematics
    P.O. Box 4 (Yliopistonkatu 5)
    00014 University of Helsinki, Finland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek