Une formule pour les extensions de foncteurs composés
Tom 177 / 2003
Fundamenta Mathematicae 177 (2003), 55-82
MSC: 18G05, 18G10, 18G15, 18G40, 55S10.
DOI: 10.4064/fm177-1-4
Streszczenie
Let $p$ be a prime, and let ${\cal F}$ be the category of functors from the finite $\Bbb F_p$-vector spaces to all $\Bbb F_p$-vector spaces. The object $\rm Id$ of ${\cal F}$ is the inclusion functor. Let $F$ and $G$ be two objects in ${\cal F}$. If $F$ and $G$ satisfy suitable conditions, the main result of this paper allows one to compute $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},G \circ F)$ from the knowledge of $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},F)$ and $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},G)$.